Cancer and mTORi in KT: Case Sharing

Asst. Prof. Naowanit Nata, MD Nephrology Division, Department of Medicine Phramongkutklao Hospital & College of Medicine

Disclosure Information

- * Asst. Prof. Naowanit Nata, MD
- **Scientific Advisor/Honoraria:**
 - Novartis

✤ <u>DISCLAIMER:</u>

 This is the event sponsored by Novartis. The information is accurate at the time of presentation. Any data about non- Novartis products are based on publicly available information and/or personal experience at the time of presentation. Novartis does not support the promotion of this product in a manner inconsistent with its approved labeling.

Outlines: Cancer and mTORi in KT

- **1. Epidemiology of post-KT cancer?**
- 2. Risk factors and pathogenesis of post-KT cancer?
- **3. Post-KT cancer and outcomes?**
- 4. How to detection and management post-KT cancer?
- **5. mTORi in post-KT malignancy?**

Case sharing

Outlines: Cancer and mTORi in KT

1. Epidemiology of post-KT cancer?

2. Risk factors and pathogenesis of post-KT cancer?

- **3. Post-KT cancer and outcomes?**
- 4. How to detection and management post-KT cancer?
- 5. mTORi in post-KT malignancy?

Case sharing

Incidence of Cancer after kidney transplants

- Cumulative incidence of solid organ CA ~ 10% and 15% at around 15 years after KT
- Caucasian: Skin CA incidence > 60%
- Higher risk magnitude depends on CA type
- Risk increases in viral/immune driven cancers

The standardized incidence ratios of different cancer types in recipients of kidney transplants

Al-Adra D, et al. Clin J Am Soc Nephrol. 2022 Mar;17(3):434-443.

Incidence of de novo post-transplant malignancy among Thai adult kidney transplant recipients: a single-centered, population-controlled, retrospective cohort study at the highest-volume kidney transplant center in Thailand

Method & Cohorts

2,024 adult kidney transplant recipients

Single center retrospective cohort study in Thailand

From 1986 to 2019 16,495 person-years at risk

Incidence of de novo malignancy compare with national cancer registry

times higher risk of all malignancy compared with general population, adjusting for age and sex

Standardize incidence ratio (SIR) of most common cancer

GRAPHICAL ABSTRACT |

Distribution and clinical characteristics of malignancies following KT by sex

		Male patients	Female patients	All	Percentage	Age at transplantation, mean ± SD, y	Age at diagnosis of PTM, mean ± SD, y	Time from transplant to PTM, median (IQR), y
Solid	Solid							
	Urothelial	11	17	28	35.0	49.7 ± 9.93	58.7 ± 12.7	6.63 (4.55, 10.4)
	Prostate	9		9	11.3	56.3 ± 7.22	68.8 ± 7.32	11.8 (8.70, 13.0)
	Liver and bile duct	5	4	9	11.3	46.0 ± 11.2	53.5 ± 14.1	4.96 (3.15, 9.34)
	Breast		8	8	10.0	47.3 ± 7.31	53.0 ± 7.92	5.72 (2.64, 9.03)
	Colorectal	2	4	6	7.5	47.8 ± 9.91	62.8 ± 7.80	13.0 (12.2, 14.4)
	Trachea, lung, bronchus	5	1	6	7.5	57.0 ± 6.04	61.4 ± 6.73	4.67 (3.24, 6.23)
	Other solid malignancies,	1	1	2	2.5	54.8 ± 5.59	58.7 ± 6.54	3.79 (3.12, 4.46)
	unspecified							
	Cervix		3	3	3.8	57.1 ± 2.77	61.5 ± 5.53	3.49 (1.89, 7.85)
	Gallbladder	1	0	1	1.3	38.6	40.5	1.96
	Kidney	3	0	3	3.8	55.0 ± 6.77	62.9 ± 4.29	9.36 (4.43, 9.94)
	Thyroid	0	2	2	2.5	49.6 ± 23.8	53.1 ± 21.3	3.43 (1.64, 5.22)
	Stomach	1	0	1	1.3	63.7	77.0	13.3
	Ovary		1	1	1.3	60.9	63.3	2.43
	Uterus, part unspecified		1	1	1.3	35.6	47.4	11.8
	Total	38	42	80	100			
	Hematologic							
Hematologic	NHL							
mematologic	Monomorphic B cell	15	8	23	71.9	47.1 ± 10.2	57.2 ± 11.1	11.4 (4.11, 15.4)
	Polymorphic	1	3	4	12.5	49.0 ± 12.7	54.6 ± 11.0	4.16 (4.11, 4.57)
	Monomorphic T cell	2	0	2	6.3	37.3 ± 13.7	44.5 ± 19.6	4.84 (1.61, 12.7)
	Leukemia, all types	1	1	2	6.3	54.1 ± 6.52	58.4 ± 6.23	4.36 (4.16, 4.57)
	HL	1	0	1	3.1	52.3	60.1	7.78
	Total	20	12	32	100			
Skin	Skin							
	SCC	12	4	16	76.2	50.5 ± 7.31	63.0 ± 7.02	10.7 (7.10, 18.8)
	BCC	4	1	5	23.8	52.4 ± 14.4	62.4 ± 8.73	7.62 (3.15, 15.3)
	Total non-melanoma	16	5	21	100			

Abbreviations: BCC, basal cell carcinoma; HL, Hodgkin's lymphoma; IQR, interquartile range; NHL, non-Hodgkin's lymphoma; PTM, post-transplant malignancy; SCC, squamous cell carcinoma; SD, standard deviation.

Srisuwarn P, et al. Transpl Int. 2024 Feb 26;37:11614.

scientific reports

Check for updates

OPEN Report on post-transplantation cancer in southeast Asia from the Thai kidney transplantation cohort

Suthanit Laowalert¹, Nattakan Naitook¹, Kesawan Boonnim¹, Uayporn Prungrit¹, Nidjaree Aekkachaipitak¹, Pornpawee Lamjantuek¹, Wisit Liwlompaisan¹, Rungrote Khunprakant¹, North Techawathanawanna¹, Viroon Mavichak¹ & Suwasin Udomkarnjananun²

Post-kidney transplant cancer in the cohort

	Cancer type	Primary cancer, n (%)	Second primary cancer, n (%)
	Total	91 (100%)	8 (100%)
1.	Urothelial cancer*	29 (31.9%)	2 (25.0%)
2.	Hepatocellular cancer	13 (14.3%)	- 🗸
3.	Skin cancer	9 (9.9%)	1 (12.5%)
4.	Kidney cancer**	8 (8.8%)	1 (12.5%)
5.	Colorectal cancer	6 (6.6%)	-
-	Prostate cancer	5 (5.5%)	1 (12.5%)
	Other gastrointestinal tract cancers	5 (5.5%)	-
	Post-transplant lymphoproliferative disease	4 (4.4%)	1 (12.5%)
	Breast cancer	4 (4.4%)	-
	Lung cancer	3 (3.3%)	1 (12.5%)
	Thyroid cancer	3 (3.3%)	-
	Parotid gland cancer	1 (1.1%)	1 (12.5%)
	Uterine cancer	1 (1.1%)	-

*All urothelial cancers occurred in the native urinary tract. **One case of kidney cancer was localized in the kidney allograft only, while another case of kidney allograft cancer occurred as a second

primary cancer following native kidney cancer.

Incidence rate, age- and sex-adjusted incidence rate (per 1000 person-year), and SIR of post-kidney transplant cancer

Type of cancer	Incidence rate (per 1000 person-year) with 95% CI	95% CI	Adjusted-incidence rate (per 1000 person-year)	95% CI	SIR	95% CI	p-value
Total	12.1	9.9-14.8	18.9	16.5-21.4	2.7	2.4-3.1	< 0.001
Urothelial cancer	3.8	2.7-5.4	6.9	5.4-8.4	42.5	32.9-54.9	< 0.001
Hepatocellular cancer	1.6	0.9–2.7	2.4	1.5-3.3	2.1	1.4-3.0	< 0.001
Skin cancer	1.1	0.6-2.1	1.8	1.1-2.6	7.7	5.0-11.9	< 0.001
Kidney cancer	1.1	0.6-2.1	1.4	0.7-2.0	24.4	14.3-41.5	< 0.001
Colorectal cancer	0.7	0.3-1.6	0.8	0.2–1.3	1.0	0.5-1.8	0.876
Other gastrointestinal tract cancers	0.6	0.2-1.4	2.2	1.4-3.0	6.7	4.5-9.9	< 0.001
Prostate cancer	0.6	0.2-1.4	0.9	0.3-1.4	3.3	1.8-6.1	< 0.001
Post-transplant lymphoproliferative disease	0.6	0.2-1.4	0.3	0.01-0.6	1.2	0.5-3.3	0.659
Lung cancer	0.5	0.2-1.3	0.6	0.2-1.0	0.6	0.3-1.3	0.218
Breast cancer	0.5	0.2-1.3	0.3	0.01-0.7	0.5	0.2-1.3	0.176
Thyroid cancer	0.4	0.1-1.1	0.6	0.1-1.0	3.8	1.7-8.1	0.001
Parotid gland cancer	0.2	0.1-1.0	0.1	0.01-0.3	3.2	0.5-21.9	0.244
Uterine cancer	0.1	0.01-0.9	0.2	0.01-0.5	7.7	0.9-59.7	0.051

SIR standardized incidence ratio

Cumulative incidences of post-KT cancers and the median time from KT to cancer diagnosis

Laowalert S, et al. Sci Rep. 2024 Aug 30;14(1):20154.

Outlines: Cancer and mTORi in KT

- **1. Epidemiology of post-KT cancer?**
- 2. Risk factors and pathogenesis of post-KT cancer?
 3. Post-KT cancer and outcomes?
 4. How to detection and management post-KT cancer
 5. mTORi in post-KT malignancy?

Case sharing

Etiology and pathogenesis of malignancies after solid organ transplantation

Classification of Cancers Post-Kidney transplant

Table 2. Classification of Cancers Post-KTx

Common Solid Organ Cancers in the General Population	Viral-Mediated Cancers	CKD/ESKD-Related Cancers	NMSC
Breast Prostate Lung Colorectal Melanoma	Kaposi sarcoma (HHV-8) Post-transplant lymphoproliferative disorder (EBV) Oral, genital, cervical, anal (HPV) Hepatocellular carcinoma (HBV, HCV)	Bladder Kidney Thyroid	SCC BCC

NOTE. Melanoma is dependent on the geographic location (e.g., Australia, New Zealand). Thyroid is related to CKD/ESKD because the diagnosis may be related to incidental findings when evaluating parathyroid glands for CKD-related hyperparathyroidism. Abbreviations: BCC, basal cell carcinoma; CKD, chronic kidney disease; EBV, Epstein-Barr virus; ESKD, end-stage kidney disease; HBV, hepatitis B virus; HCV, hepatitis C virus; HHV-8, human herpesvirus 8; HPV, human papillomavirus; KTx, kidney transplantation; NMSC, nonmelanoma skin cancer; SCC, squamous cell carcinoma.

Risk Factors for Post-Kidney transplant Cancer

Risk Factor	Type of Cancer	Effect	Reference Group
Sex, male ⁷	SCC	aOR 1.56	Female
	BCC	aOR 1.58	
	Melanoma	aOR 1.75	
Ethnicity, Caucasian ⁷	SCC	aOR 9.95	African-American ethnicity
	BCC	aOR 38.78	
	Melanoma	aOR 2.04	
Multiple sexual partners ¹⁴	High carcinogenic risk HPV infection	≥10 lifetime partners: aOR 13.78	1-2 lifetime partners
Pre-transplant dialysis duration, >4.5 years' ⁸	Lung	aHR 3.32	<1.5 years' duration
	Urinary tract	aHR 2.57	
Pre-transplant cancer diagnosis ⁹	Overall	Recurrence 1.6 per 100 p-y	
	Lung	Recurrence 5.4 per 100 p-y	
	Gastrointestinal	Recurrence 4.7 per 100 p-y	
	Cervical	Recurrence 3.9 per 100 p-y	
	Multiple myeloma ¹¹	75% recurrence	
	AL amyloidosis ¹²	29% recurrence	
EBV mismatch donation, $D+/R-^{15}$	PTLD	DD KTx: aHR 6.33	EBV R+ serostatus
, · ·		LD KTx: aHR 5.14	
Expanded criteria kidney donor ¹⁶	Overall cancer	aHR 1.52	Living donor
	Urinary tract cancer	aHR 1.79	C C
	PTLD	aHR 2.72	
Pre-transplant immunosuppression for glomerular disease ¹⁷	Overall solid or hematologic cancer	aHR 1.82	No pre-transplant immunosuppression
Lymphocyte-depleting induction ¹⁸	PTLD	Monoclonal Ab: RR 1.72	No induction therapy
		Polyclonal Ab: RR 1.29 (p=0.27)	
Treatment of acute rejection with T-cell-depleting antibody ¹⁹	Urinary tract cancer	aHR 2.20	No rejection

Abbreviations: Ab, antibody; aHR, adjusted hazard ratio; AL, amyloid light chain; aOR, adjusted odds ratio; BCC, basal cell carcinoma; D+, donor-positive serology; DD, deceased donor; EBV, Epstein-Barr virus; KTx, kidney transplantation; LD, living donor; PTLD, post-transplant lymphoproliferative disorder; P-Y, person-years; R-, recipient-negative serology; RR, relative risk; SCC, squamous cell carcinoma.

Massicotte-Azarniouch D, et al. Semin Nephrol. 2024 Jan;44(1):151494.

Outlines: Cancer and mTORi in KT

1. Epidemiology of post-KT cancer?

2. Risk factors and pathogenesis of post-KT cancer?

3. Post-KT cancer and outcomes?

How to detection and management post-KT cancer?
 mTORi in post-KT malignancy?

Case sharing

สาเหตุของการเสียชีวิตของผู้รับไตตามช่วงปีที่ได้รับการปลูกถ่ายไต

รายงานข้อมูลการปลูกถ่ายอวัยวะประจำปี พ.ศ. 2565

Cumulative incidence function of cancer death compared with infection and cardiovascular death

Laowalert S, et al. Sci Rep. 2024 Aug 30;14(1):20154.

The standardized mortality ratios of different cancer types in recipients of kidney transplants

Mortality rate of post-kidney transplant cancer (per 100 person-year) among recipients diagnosed with cancer

Type of cancer	Mortality rate among recipients with cancer (per 1000 person-year)	95% CI	Mortality risk ratio compared to recipients without cance	95% CI	p-value
Total	61.4	47.1-79.9	3.3	2.4-4.5	< 0.001
Hepatocellular cancer	145.1	82.4-255.5	6.9	3.5-12.4	< 0.001
Lung cancer	97.8	31.6-303.4	4.7	1.0-13.9	0.032
Other gastrointestinal tract cancers	83.7	31.4-223.1	5.8	1.5-15.0	0.007
Post-transplant lymphoproliferative disease	75.6	28.4-201.4	5.2	1.4-13.5	0.001
Skin cancer	68.6	28.5-164.7	3.3	1.0-7.8	0.026
Colorectal cancer	62.1	25.8-149.2	4.4	1.4-10.4	0.008
Breast cancer	59.4	14.8-237.4	2.8	0.3-10.4	0.195
Parotid gland cancer	59.3	8.4-421.0	5.5	0.1-30.9	0.183
Urothelial cancer	57.0	34.9-93.0	2.8	1.6-4.7	< 0.001
Thyroid cancer	35.7	5.0-253.4	1.7	0.04-9.6	0.564
Prostate cancer	26.5	3.7-187.8	1.3	0.03-7.1	0.737
Kidney cancer	9.4	1.3-66.9	0.6	0.01-3.2	0.638
Uterine cancer	0	-	0	0-7.0	0.585
Patient without cancer	21.0	17.9-24.5	-	-	-

Survivor function of kidney transplant recipients with and without post-transplantation cancer

Laowalert S, et al. Sci Rep. 2024 Aug 30;14(1):20154.

Outlines: Cancer and mTORi in KT

- Epidemiology of post-KT cancer?
 Risk factors and pathogenesis of post-KT cancer
 Post-KT cancer and outcomes?
- 4. How to detection and management post-KT cancer?5. mTORi in post-KT malignancy?

Case sharing

Recommendations identified in clinical practice guidelines by cancer site and transplant organ

				Kidney				
Screening	KDIGO (2009)	CST & CSN (2010)	NKF (2009)	KHA-CARI (2012)	AST-Kidney (2000)	EBPG (2002)	RA (2011)	
Skin/lin cancer								
Solfovam	R	B		B	Monthly			
Physician exam	n	n	Annually	n	Appually	_	_ В	
Specialist exam	Appually	Appually	Annually	Annually	Annually	_		
	Annually	Annualiy	_	Annually	_	_	_	
Physician exam	_	_	_	_	Annually	_	_	
Testicular cancer								
Self-exam	-	_	-	_	-	-	R	
Cervical cancer								
Pelvic exam	G (every 3 years)	_	_	Annually	Annually	Annually	G (every 3 vears)	
Pap cytology	G (every 3 years)	Annually	-	-	Annually	Annually	G (every 3 years)	
Breast cancer								
Mammography	G (annually) ²	G (every 2 vears) ¹	-	-	Every 1–2 years	R	G (every 3 vears)	
Self-exam	_	_	_	_	_	_	R	
Prostate cancer								
PSA	_	_	_	_	Annually ¹	Annually ¹	_	
DRE	_	_	_	_	Annually ¹	Annually ¹	_	
Not recommended	G	G	_	_	_	- '	G	
Lung cancer								
Not recommended	_	_	_	_	R	_	_	
Kidney cancer								
Ultrasound	_	_	_	_	_	R	-	
Not recommended	_	_	_	_	_	_	R	
Bladder/urothelial canc	er							
Not recommended	_	_	_	_	R	_	_	

KDIGO:

- Skin Specialist annually
- Cervical Every 3 years
- Breast- Mamogram annually
- Prostate General
- ✤ HCC AFP/US annually
- CRC Colonoscope every 10 years

G

Others Recommendation:

- Lung AT-Kidney
- Kidney EBPG
- Urothelial AST-Kidney
- Lymphoma AST-Kidney

Acuna SA, et al. HuA Systematic Review of Clinical Practice Guidelines. Am J Transplant. 2017 Jan;17(1):103-114.

Recommendations identified in clinical practice guidelines by cancer site and transplant organ

				Kidney					Liver			
Screening	KDIGO (2009)	CST & CSN (2010)	NKF (2009)	KHA-CARI (2012)	AST-Kidney (2000)	EBPG (2002)	RA (2011)	AST-Liver (2009)	AASLD- Adult (2013)	AASLD- Pediatric (2013)	Heart/lung ISHLT (2010)	All solid organs SCPG (2009)
Liver/HCC AFP level	Annually ³	Annually ³	_	_	Every 6–12 months ⁵	_	Annually ³	-	_	_	_	_
Ultrasound	Annually ³	Annually ³	-	_	Every 6–12 months ⁴	-	Annually ³	-	-	_	-	_
Abdominal imaging	-	_	_	-	_	_	_	-	-	-	-	_
Colorectal cancer FOBT Sigmoidoscopy	G (annually) or G (every 5 years) or	G (annually) or G (every 5 years) or	_	_	G (annually) ¹ G (every 5 years) ¹	R _	G G	-	_	NS	G G	-
Colonoscopy	G (every	G (every	_	-	_	-	G	-	Annually ⁴		G	-
Lymphomas Physician exam	–	–	_	_	Every 3 months in first year, then annually	_	_	-	-	_	-	_

¹Only for patients older than 50 years.

²Only for patients older than 40 years.

³Only for patients with cirrhosis.

⁴Only for patients at high risk.

⁵Only for patients with liver disease.

R = Screening recommended, but no frequency.

G = Same as the guidelines for the general population.

AASLD, American Association for the Study of Liver Disease; AFP, alpha-fetoprotein; AST, American Society of Transplantation; CRC, colorectal cancer; CST & CSN, Canadian Society of Transplantation and Canadian Society of Nephrology; DRE, digital rectal exam; EBPG, European Best Practice Guidelines; FOBT, fecal occult blood test; HCC, hepatocellular carcinoma; ISHLT, International Society of Heart and Lung Transplantation; KDIGO, Kidney Disease: Improving Global Outcomes; KHA-CARI, Kidney Health Australia— Caring for Australasians with Renal Impairment; NKF, National Kidney Foundation; NS, nonspecific modality; Pap, Papanicolaou; PSA, prostate-specific antigen; RA, Renal Association Clinical Practice Guidelines; SCPG, Swiss Clinical Practice Guidelines.

Recommendations for cancer screening in recipients of KT

Cancers	Recommendations	Evidence
Breast	For women aged 50–74 years, screening mammography once every 2 years. For women <50, the decision to start regular screening should be an individual one (77).	Extrapolation from general population
Prostate	For men aged 55–69 years, screening decisions should be individualized after a conversation with their clinician about the potential benefits and harms. For men ≥70 years, the potential benefits may not outweigh the expected harms, and these men should not be routinely screened for prostate cancer (78).	Extrapolation from general population
Cervical	Annual Pap testing or HPV testing every 3–5 years starting at the age of 25 years until 74 years (72).	In view of the higher risk of disease, some have suggested more frequent Pap testing. However, no evidence to suggest increased frequency of HPV testing.
Bowel	For adults aged 45–75 years, fecal immunochemical testing biennially, sigmoidoscopy every 5 years, or colonoscopy every 5–10 years (79).	Screening using fecal immunochemical testing is accurate in recipients of kidney transplants. However, it may be associated with higher risk of complications associated with diagnostic colonoscopies (80).
Lung	For adults aged 55–79 years, annual low-dose computed tomography scans for those who have smoked one pack per day for 30 years or equivalent (two packs per day for 15 years) (81).	Extrapolation from general population
Skin	Monthly self-skin examination and 6- to 12-monthly total body skin examination by expert physicians and dermatologists (82)	Expert opinions
Renal cell	Routine screening for renal cell carcinoma using US is not recommended for all recipients of transplants, except for high-risk individuals.	Population-based screening using US for all recipients of kidney transplants is not cost-effective (76).
Liver	Routine screening using US, with and without α -fetoprotein, every 6 months in patients with cirrhosis.	Extrapolation from general population
PTLD	Routine monitoring of patients at high risk (donor EBV seropositive/ recipient seronegative) for EBV by NAT. Once in the first week after transplantation, monthly for the first 3–6 months, and every 3 months until the end of the first post-transplant year (82).	Expert opinions
Pap, Papan Epstein–Ba	icolaou; HPV, human papillomavirus; US, ultrasonography; PTLD, post-trans rr virus; NAT, nucleic acid amplification techniques.	splant lymphoproliferative disease; EBV,

Patients with a de novo cancer after transplant

1. Correct cause and specific management

2. Reduction in immunosuppression

3. Avoidance of immune checkpoint inhibitors

Outlines: Cancer and mTORi in KT

- **1. Epidemiology of post-KT cancer?**
- 2. Risk factors and pathogenesis of post-KT cancer?
- **3. Post-KT cancer and outcomes?**
- 4. How to detection and management post-KT cancer?
- **5. mTORi in post-KT malignancy?**

Case sharing

Calcineurin inhibitor and malignancies

Salvadori M. Antineoplastic effects of mammalian target of rapamycine inhibitors. World J Transplant. 2012 Oct 24;2(5):74-83.

mTOR plays a central role in cell growth, proliferation and survival^{5,6}

Pópulo, Helena, et al. Intl J of Molecular Sciences 2012;13(2):1886–1891. Buchkovich NJ, et al. Nat Rev Microbiol. 2008 Apr;6(4):266-75.

Current mTOR inhibitors

OCH₃

R

39

Pharmacokinetic	Everolimus ^{1,3}	Sirolimus ^{2,3}
property R	= "Мило ОН	R= ^{/////} OH
Oral bioavailability	20%	14%
Elimination t _{1/2}	28 hours	62 hours
Time to steady state	4 days	5–7 days
Plasma protein binding	74%	92%
Loading dose	No	Yes (6.0 mg)
Dosing interval	Twice daily	Once daily
Target trough levels	3-8 ng/mL	4–12 ng/mL
Concomitant dosing with CsA	Yes	4 hr post-CsA dose

The risk of cancer in kidney transplant recipients may be reduced in those maintained on everolimus and reduced cyclosporine

Wai H. Lim^{1,2}, Graeme R. Russ³, Germaine Wong^{4,5}, Helen Pilmore^{6,7}, John Kanellis⁸ and Steven J. Chadban^{9,10}

Treatment Groups

2309 study (n= 95) ANZDATA linkage Cancer after 7 years follow-up

Figure 4 | Unadjusted Kaplan-Meier curves of any incident cancers, including nonmelanoma skin cancers (NMSC) by study group (standard exposure cyclosporine with mycophenolate sodium and corticosteroids [MPA] vs. everolimus 1.5 mg and everolimus 3.0 mg; log-rank P value 0.003).

Lim WH, et al. Kidney Int. 2017 Apr;91(4):954-963.

Everolimus Reduces Cancer Incidence and Improves Patient and Graft Survival Rates after Kidney Transplantation: A Multi-Center Study

Table 3. Distribution of cancer types.

	Group 1	Group 2	Group 3	Group 4
The number of recipients	248	735	700	304
Total cancer-positive recipients	42 (16.9)	119 (16.2)	80 (11.7)	1 (0.3)
Double cancer-positive recipients	6	12	9	0
Triple cancer-positive recipients	4	1	0	0
Type of cancer				
PTLD	3	21	13	1
renal cell carcinoma	2	12	13	0
breast cancer	4	13	13	0
skin cancer (melanoma)	0	0	1	0
skin cancer (non-melanoma)	10	12	9	0
prostate cancer	1	5	5	0
colorectal cancer	5	7	6	0
uterus cancer	2	10	5	0
gastric cancer	5	8	5	0
urothelial cancer	2	6	4	0
thyroid cancer	1	6	3	0
tongue cancer	3	7	2	0
pancreas cancer	0	2	2	0
hepatocellular carcinoma	5	7	1	0
lung cancer	2	1	0	0
ovarian cancer	1	1	0	0
vaginal cancer	0	1	0	0
anal cancer	0	1	0	0
others	10	13	7	0
Total	56	133	89	1

PTLD, post-transplant lymphoproliferative disorders.

group 1: Antiproliferative agents, steroids group 2: CNIs, antiproliferative agents, steroids group 3: CNIs, MMF, steroids group 4: mTORi

Cumulative cancer incidence rates after kidney transplantation. (a) all cancers, (b) all cancers except non-melanoma skin cancer: Blue, group 1; green, group 2; dark red, group 3; vermilion, group 4.

Imamura R, et al. J Clin Med. 2022 Jan 4;11(1):249.

RESEARCH ARTICLE

Effects of mTOR-Is on malignancy and survival following renal transplantation: A systematic review and meta-analysis of randomized trials with a minimum follow-up of 24 months

Sebastian Wolf^{1,2°}, Verena S. Hoffmann^{3,4°}, Antje Habicht⁵, Teresa Kauke¹, Julian Bucher¹, Markus Schoenberg¹, Jens Werner¹, Markus Guba¹, Joachim Andrassy¹*

 Department of General, Visceral and Transplant Surgery, Ludwig-Maximilian's University, Munich, Germany, 2 Department of Visceral and Transplant Surgery, Augsburg Hospital, Augsburg, Germany,
 Institute of Medical Information Sciences, Biometry and Epidemiology (IBE), Ludwig-Maximilian's-University, Munich, Germany, 4 Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany, 5 Transplant Center, University Hospital Grosshadern, Ludwig-Maximilian's University, Munich, Germany

These authors contributed equally to this work.
* joachim.andrassy@med.uni-muenchen.de

Include 14 RCT studies in KT recipients, mean F/U 40.6 months

Wolf S, et al. PLoS One. 2018 Apr 16;13(4):e0194975.

Malignancies on mTOR-I (monotherapy or combined with CNIs) versus CNI treatment post transplantation

A)

Tau² = 0; Chi² = 1

Author and Year	mTOR-I	(all) 🕂	favours	→ CNI		Observed RR (95% CI)
Buchler 20071		,			0	0.54 (0.19-1.51)
deFijter 2016			-		0	.60 (0.28-1.28)
Ekberg 2007 ²			H .		0	.90 (0.48-1.70)
Flechner 2002 ³		-			0	.48 (0.13-1.76)
Flechner 2011					1	.10 (0.40-3.05)
Guba 2010 ⁴	-				0	0.08 (0.00-1.47)
Kandaswamy 2005			•		0	.28 (0.05-1.49)
Kumar 2006 ⁵		1	•		0	0.21 (0.07-0.60)
Lebranchu 20096					0	.74 (0.30-1.81)
Lorber 2005			н щ н		0	0.81 (0.40-1.64)
Silva 2013					0	.22 (0.01-4.50)
Tedesco 20107			- -		0	.60 (0.30-1.23)
Vitko 2004 ⁸			- +		1	.05 (0.49-2.28)
Random Effects Model			•		(0.67 (0.51-0.86)
Test for heterogeneity:	r		i		٦	Test for
Q (df = 12) = 12.3250	0.01		1	1	00	overall effect:
p = 0.4199 I ² = 0.00% (CI 0.00-74.84)		Relativ	ve Risk (log	scale)		p = 0.0020

B)

		favours			C	bserved RR
Author and Year n	nTOR-I ((all) ←	-	→ CNI		(95% CI)
Buchler 20071		⊢			0.6	5 (0.17-2.41)
Flechner 2002 ²					0.6	5 (0.12-3.61)
Flechner 2011					0.24	4 (0.05-1.25)
Guba 2010 ³	•				0.0	9 (0.01-1.69)
Kandaswamy 2005		H	•	-	0.5	4 (0.03-8.50)
Kumar 2006 ⁴			-		0.2	1 (0.07-0.60)
Lebranchu 20095			-		0.92	2 (0.32-2.61)
Silva 2013		<u> </u>	•		0.3	6 (0.04-3.46)
Random Effects Model			•		0.43	8 (0.24-0.77)
Test for heterogeneity:	L		i			Test for
Q (df = 7) = 5.9861 p = 0.5414 l^2 = 13.44% (CI 0.00-67.81 Tau ² = 0.0971: Cbi ² = 1.16	0.01)	Relative	1 Risk (log	10 scale)	0 0	p = 0.0046

Wolf S, et al. PLoS One. 2018 Apr 16;13(4):e0194975.

Graft survival censored for death post transplantation

B)

C)

Author and Year CNI	favours ←─────────── mī	for-I (all)	Observed RR (95% CI)
Buchler 20071	—		1.00 (0.87-1.14)
deFijter 2016			1.00 (0.98-1.01)
Ekberg 2007 ²			0.97 (0.93-1.01)
Flechner 2002 ³	└──		1.21 (1.00-1.47)
Flechner 2011			0.98 (0.97-1.00)
Kandaswamy 2005	⊢ •		1.02 (0.98-1.07)
Lebranchu 20094			0.97 (0.94-1.01)
Lorber 2005			0.97 (0.92-1.02)
Silva 2013			1.00 (0.97-1.03)
Tedesco 20105	H.		0.98 (0.95-1.01)
Vitko 2004 ⁶	 -		0.99 (0.93-1.05)
Random Effects Model	•		0.99 (0.98-1.00)
Г	i		
0.8	1	1.5	
	Relative Risk (log sc	ale)	
Test for heterogeneity: Q (df = 10) = 13.0198 p = 0.2226 $l^2 = 12.84\%$ (CI 0.00-95.03 Taug2 = 0. Cbg2 = 1.15	5)		Test for overall effect: p = 0.0344

Overall patient survival post transplantation

A)

Author and Year	CNI	favours ← → mT	Observed RR OR-I (95% CI)
Buchler 20071	Ļ		0.95 (0.85-1.07)
deFijter 2016		× ₩ 4	1.00 (0.98-1.02)
Ekberg 2007 ²		H # -1	1.00 (0.98-1.03)
Flechner 2002 ³	,		0.96 (0.80-1.14)
Flechner 2011			0.97 (0.94-1.01)
Guba 20104			1.02 (0.97-1.07)
Lebranchu 20095			1.00 (0.95-1.04)
Silva 2013		— •	0.99 (0.94-1.04)
Random Effects Model		•	1.00 (0.98-1.01)
Test for heterogeneity: Q (df = 7) = 3.5061 p = 0.8346 l ² = 0.00% (CI 0.00-60.24) Tau ² = 0; Chi ² = 1	0.8 Rel	1 1 ative Risk (log scale)	Test for overall effect: .2 p = 0.7137

B) favours Observed RR Author and Year CNI mTOR-I+CNI (95% CI) 1.00 (0.97-1.04) Kandaswamy 2005 0.99 (0.87-1.12) Kumar 20061 0.99 (0.95-1.03) Lorber 2005 0.99 (0.97-1.02) Tedesco 2010² 1.00 (0.95-1.05) Vitko 20043 Random Effects Model 1.00 (0.98-1.01) Test for 0.8 1.2 Test for 1 heterogeneity: overall effect: Relative Risk (log scale) Q (df = 4) = 0.3869 p = 0.5925p = 0.9835I² = 0.00% (CI < 0.00-< 0.00) Tau2 = 0; Chi2 = 1

C)

Author and Year	CNI	favours	mTOF	Observed RR R-I (all) (95% CI)
Buchler 20071	+			0.95 (0.85-1.07)
deFijter 2016		- -		1.00 (0.98-1.02)
Ekberg 2007 ²		×÷+		1.00 (0.98-1.03)
Flechner 2002 ³	·		-	0.96 (0.80-1.14)
Flechner 2011		H		0.97 (0.94-1.01)
Guba 20104		H•		1.02 (0.97-1.07)
Kandaswamy 2005				1.00 (0.97-1.04)
Kumar 2006 ⁵		•	•	0.99 (0.87-1.12)
Lebranchu 2009 ⁶				1.00 (0.95-1.04)
Lorber 2005				0.99 (0.95-1.03)
Silva 2013				0.99 (0.94-1.04)
Tedesco 20107		-		0.99 (0.97-1.02)
Vitko 2004 ⁸				1.00 (0.95-1.05)
Random Effects Model		•		1.00 (0.99-1.01)
Test for heterogeneity:		i		Test for overall effect:
Q (df = 12) = 3.9303 p = 0.9847	0.8	1	1.2	p = 0.5356
I ² = 0.00% (CI <0.00-<0.00) Tau ² = 0; Chi ² = 1	Rel	ative Risk (log sca	le)	

<u>S</u>

Clinical Kidney Journal, 2021, vol. 14, no. 9, 2047-2058

doi: 10.1093/ckj/sfaa262 Advance Access Publication Date: 14 December 2020 Original Article

ORIGINAL ARTICLE

Sirolimus in renal transplant recipients with malignancies in Germany

Marcel G. Naik (1,2, Wolfgang Arns³, Klemens Budde¹, Fritz Diekmann⁴, Frank Eitner⁵, Wilfried Gwinner⁶, Nils Heyne⁷, Jan Steffen Jürgensen⁸, Christian Morath⁹, Udo Riester¹⁰, Katharina M. Heller^{11,*} and Michael Fischereder^{12,*}; for the German Sirolimus Study Group

 ¹Division of Nephrology, Charité University-Mitte, Berlin, Germany, ²Berliner Institut für Gesundheitsforschung/Berlin Institute of Health (BIH) Körperschaft des öffentlichen Rechts Anna-Louisa-Karsch-Str. 2 10178 Berlinn, Germany, ³Transplant Centre Cologne, Cologne General Hospital, Cologne, Germany, ⁴Department of Nephrology and Kidney Transplantation, Hospital Clinic, Barcelona, Spain,
 ⁵Division of Nephrology and Immunology, Kidney Diseases Research, RWTH Aachen University Hospital, Bayer AG, Wuppertal, Germany, ⁶Division of Nephrology, Hannover Medical School, Hannover, Germany,
 ⁷Division of Nephrology, University of Tübingen, Tübingen, Germany, ⁸Division of Nephrology, Charité University - Virchow, Berlin, Germany, ⁹Division of Nephrology, University of Heidelberg, Heidelberg, Germany, ¹⁰Pfizer Pharma GmbH, Berlin, Germany, ¹¹Department of Medicine, Division of Nephrology, University of Erlangen, Erlangen, Germany and ¹²Department of Medicine IV, University Hospital of Munich, Munich, Germany

- Retrospectively analysed 726 renal allograft recipients converted to SRL from 10 German transplant centres. Patient and graft survival were analysed depending on malignancy status prior to conversion and tumour entity.
- Conversion to SRL in patients with a history of cancer is safe regarding renal function and graft survival, while patient survival is largely dependent on tumour entity.

Correspondence to: Marcel G. Naik; E-mail: marcel.naik@charite.de

Effect of mechanistic target of rapamycin inhibitors on postrenal transplantation malignancy: A nationwide cohort study

	Nonca	ncer	Cance	er	
	N	%	N	%	P value
Total subjects	3879	87.40	559	12.60	
The age receiving tran	nsplantati	ion (y)			
20-44	1747	45.04	163	29.16	< 0.0001
45-64	1969	50.76	361	64.58	
65+	163	4.20	35	6.26	
Sex					
Female	1797	46.33	306	54.74	0.00
Male	2080	53.62	252	45.08	
Using mTORi duration					
Never used	2990	77.08	430	76.92	0.93
Within 1 y	238	6.14	38	6.80	
Within 1-5 y	390	10.05	55	9.84	
Over 5 y	261	6.73	36	6.44	

	mTO	mTORi nonusers ^a		'ORi u	isers	
	N	%	N		%	<i>P</i> value
Overall cancer	469	12.69	90		12.13	0.67
Urothelial malignancy	219	5.93	40		5.39	0.57
Kidney malignancy	58	1.57	12		1.62	0.92
Liver malignancy	66	1.79	13		1.75	0.95
Digestive system malignancy	48	1.30	11		1.48	0.69
		mTORi no	onusers ^a	mTO	ORi users	
		N	%	N	%	P value
Immunosuppressive ager	nts	3696		742		
Transplant rejection		376	10.17	119	16.04	< 0.0001
Calcineurin inhibitor		3435	92.94	720	97.04	< 0.0001
MMF		3151	85.25	696	93.80	< 0.0001
Azathioprine		199	5.38	63	8.49	0.001
Steroid		3436	92.97	714	96.23	0.001

^aNonusers: Included subjects who never used or using <1 y.

Hou YC, et al. Cancer Med. 2018 Sep;7(9):4296-4307.

Effect of mechanistic target of rapamycin inhibitors on postrenal transplantation malignancy: A nationwide cohort study

0.52

0.53

0.21, 1.31

0.20, 1.42

1.58

0.51

	All cancer		Urothelial malignancy		Kidney maligna	ncy	Liver malignancy	
mTORi	Hazard ratio	95% CI	Hazard ratio	95% CI	Hazard ratio	95% CI	Hazard ratio	95% CI
Never used	1.00		1.00		1.00		1.00	
Users	0.67	0.44, 1.03	0.66	0.35, 1.26	0.49	0.16, 1.51	0.91	0.31, 2.67
Never used	1.00		1.00		1.00		1.00	

0.51, 1.24

0.36, 0.99

Table 4. Propensity score matching of mTORi use for the occurrence of post-transplantation malignancy

0.65, 1.19

0.48, 0.95

Using 1-5 y

Using more

than 5 y

0.88

0.68

Adjusted for age, gender, comorbidities, and modalities of renal replacement therapy before transplantation and immunosuppressive agent.

0.80

0.60

Table 5. Adjusted hazard ratio for the occurrence of overall malignancy and subgroups of malignancy based on the exposure of mTORi

	All cancer		Urothelial malignancy		Kidney malignancy		Liver malignancy		Digestive system malignancy	
mTORi	Hazard ratio	95% CI	Hazard ratio	95% CI	Hazard ratio	95% CI	Hazard ratio	95% CI	Hazard ratio	95% CI
Never used	1.00		1.00		1.00		1.00		1.00	
Users	0.67	0.44, 1.03	0.66	0.35, 1.26	0.49	0.16, 1.51	0.91	0.31, 2.67	0.88	0.25, 3.15
Never used	1.00		1.00		1.00		1.00		1.00	
Using 1-5 y	0.88	0.65, 1.19	0.80	0.51, 1.24	0.52	0.21, 1.31	1.58	0.78, 3.17	0.71	0.28, 1.81
Using more	0.68	0.48, 0.95	0.60	0.36, 0.99	0.53	0.20, 1.42	0.51	0.18, 1.45	0.80	0.30, 2.11
than 5 y										

Hou YC, et al. Cancer Med. 2018 Sep;7(9):4296-4307.

Digestive system malignancy

95% CI

0.25, 3.15

0.28, 1.81

0.30, 2.11

Hazard ratio

1.00 0.88

1.00

0.71

0.80

0.78, 3.17

0.18, 1.45

Outlines

- 1. Epidemiology of post-KT cancer
- 2. Risk factors and pathogenesis of post-KT cancer
- **3. Post-KT cancer and outcomes?**
- 4. How to detection and management post-KT cancer
- 5. mTORi in post-KT malignancy

Case sharing

Thank You for Your Attention

Lt. Col. Naowanit Nata, MD Nephrology Division, Department of Medicine Phramongkutklao Hospital & College of Medicine